- · 中国医学计算机成像杂志[06/30]
- · 《中国医学计算机成像杂[06/30]
- · 《中国医学计算机成像杂[06/30]
Nature:为高维度医学成像设计可临床转化的人工(5)
作者:网站采编关键词:
摘要:致敬传奇:中国并行处理四十年,他们从无人区探索走到计算的黄金时代 | GAIR 2021 随着医疗人工智能系统从 "诊断 "转向更多的 "预后 "应用,时间到事件的
致敬传奇:中国并行处理四十年,他们从无人区探索走到计算的黄金时代 | GAIR 2021
随着医疗人工智能系统从 "诊断 "转向更多的 "预后 "应用,时间到事件的预测(而不是简单的二进制预测)将在临床环境中发现更多的相关性。时间-事件分析的特点是能够预测作为时间函数的事件概率,而二分类器只能提供一个预定时间的预测。与二元分类器不同的是,时间-事件分析考虑到了数据的删减,以考虑到那些失去随访或在观察时间范围内没有经历相关事件的人。生存分析在临床研究中很常见,也是制定循证实践指南的核心。
除了量化某些机器学习系统的预测效果外,对于构建这些系统的工程师和使用它们的临床医生来说,他们更感兴趣的是了解这些机器学习系统是如何得出结论的。显著性图和类激活图实际上仍然是解释机器学习算法如何进行预测的标准。
然而,从可操作的角度来看,时间-事件预测可能存在问题。在肺癌筛查的假设示例中,胸部计算机断层扫描中的可疑结节可能会产生一个预测,即在有或没有适当的治疗干预的情况下的中位生存率。对临床医生来说,了解机器学习系统对个体病人的预测的有多大的把握可能是很有意思的。当对一项任务没有把握时,人类往往会谨慎行事。机器学习系统也反映了这一点,其中输出是 0 到 1 范围内的“类别概率”或“正确的可能性”。然而,目前文献中描述的大多数医学影像机器学习系统,当提供给模型的输入数据超出分布范围时,缺乏说 "我不知道 "的隐含能力。例如,即使输入图像是猫的图像,训练用于从计算机断层扫描(例如)预测肺炎的分类器在设计上也被强制提供输出(肺炎或非肺炎)。
例如,可诊断为黄斑变性的视网膜特征往往需要数年时间才能表现出来。具有初期疾病特征的患者可能会被标记为“正常”,这让神经网络试图预测未来发生黄斑变性并发症的风险。纳入生存和审查的概念可能有助于训练系统更好地将正常人与那些轻度、中度和正在快速发展中的疾病个体分开。同样,训练视觉网络进行时间-事件分析可能会在用于肺癌筛查,有助于根据预期的侵略性扩散潜力进行风险分层。这种转化工作的关键是要有强大的、经过充分验证的Cox回归的深度学习扩展。在过去的几年里,已经描述了大量Cox模型的深度学习实现。Kvamme等人提出了一系列的Cox模型的比例和非比例扩展,过去还描述了更多的生存方法的实现,如DeepSurv和DeepHit46(图2)。

在面向用户方面,MIRC 临床试验处理器匿名器是一种流行的替代方法,尽管它需要使用某些遗留软件。有据可查的Python软件包(如pydicom)也可用于在使用或转给合作机构之前处理DICOM文件。然后可以提取成像数据并以各种机器可读格式存储。这些数据集可以迅速变得庞大且笨拙,虽然数据存储格式的细节超出了本观点的讨论范围,但医学成像 AI 的一个关键考虑因素是图像分辨率的保留。
文中探讨了高维临床影像数据所面临的特有挑战,并强调了开发机器学习系统所涉及的一些技术和伦理方面的考虑,更好地体现了影像模式的高维性质。此外,他们认为尝试解决可解释性、不确定性和偏见的方法应被视为所有临床机器学习系统的核心组成部分。
文章来源:《中国医学计算机成像杂志》 网址: http://www.zgyxjsjcxzzzzs.cn/zonghexinwen/2022/0809/662.html